

# **Competency Certificate**

### **HVAC** Design & Drafting

**Course Outline** 

### 1. Introduction to HVAC system

### 2. Working of an air conditioner

- a. Reverse adiabatic cycle
- b. Evaporator
- c. Compressor
- d. Condenser
- e. Expansion valves or capillary tubes
- f. Thermostat

### 3. Types of compressors used in HVAC g. Infiltration

- a. Reciprocating Air Conditioner Compressor
- b. Scroll AC Compressor
- c. Screw AC Compressor
- d. Rotary Air Conditioning Compressor
- e. Centrifugal Air Conditioning Compressor

### 4. Refrigerants used in Heating and Cooling system

- a. Basics of Thermodynamics
- b. Heat transfer
- c. Sensible heat
- d. Latent heat
- e. Psychrometric chart
- f. Dry bulb temperature
- g. Wet bulb temperature
- h. Relative humidity
- i. Humidity ratio
- j. Dew point

### 5. Heating and Air Conditioning Load calculation

#### I. Using E-20 form:

- a. Solar gain
- b. Transmission gain
- c. Equivalent temperature difference
- d. U values
- e. Bypass factor
- f. Ballast factor
- h. Fresh air requirement calculation using

ASHRAE 62.1 standards(10min)

- i. Tons of refrigerant
- j. CFM

#### II.Using HAP software

- a. Introduction to HAP Software
- b. To create weather properties
- c. Space creation in HAP
- d. System creation in HAP
  - i. Cav
  - ii.Vav
- e. Zone creation
- f. To create schedules for various application
- g. Occupant density calculation from ASHRAE 62.1standard
- h. Duplicating the spaces
- i. Editing the spaces



### 6. Equipment selection

#### Types of Heating and Air Conditioning systems

- a. DX system
- b. VRF/VRV System
- c. Package units
- d. Roof top units
  - i. Chiller system
  - ii. Air cooled chillers
  - iii.Water cooled chillers

### 7. Air distribution system

- i. Air terminals
- ii. Introduction to air terminals
- iii. Manual calculation for diffusers
- iv. Manual calculation for grills
- v. Software calculation for air terminals
- vi. Selection of collar dampers

#### a. Ducting

- i. Introduction to Ducting system
- ii. Standards used for duct design
- iii. Duct sizing methodology
- iv. Duct types
- v. Duct sizing criteria
- vi. Manual calculation for duct sizing
- vii. Software calculation for duct sizing
- viii. Selection of sheet metal gauge using SMACNA standards
- ix. Calculating the overall duct weight
- x. Static pressure calculation in ducting system

#### b. Damper selection

- i. Need for dampers in HVAC system
- ii. Damper sizing
- iii. VCD
- iv. Fire damper
- c. Duct supports
- d. Insulation
- i. Thermal insulation
- ii. Acoustic insulation
- iii. Under deck insulation

### 8. Variable Refrigerant Flow

- a. Introduction to VRF system
- b. Difference between single compressor and dual compressor system
- c. Piping design for VRF system

### 9. Hydronic Heating and Cooling

- a. Open loop system design
  - i. Water requirement
  - ii. Pipe sizing
  - iii. Finding the critical path
  - iv.Friction loss or head loss calculation
  - v. Pump capacity
- b. Closed loop system Design
  - i. Water requirement
  - ii. Pipe sizing
  - iii.Friction loss or head loss calculation
  - iv.Pump capacity

### 10. District Heating and Cooling

- a. Introduction to district heating and cooling
- b. Why district heating and cooling
  - I. General components
  - II. Centrifugal Pumps
  - III. Motors, Motor Controls,
  - IV. Variable-Frequency Drives
  - V. Pipes, Tubes, and Fittings
  - VI. Valves
  - **VII.Heat Exchangers**

### 11. Cold storage design

### 12. Ventilation design

- a. Need for ventilation
- b. Types of ventilation

### 13. Toilet ventilation

- a. Residential
- b. Commercial buildings
- c. Public bathrooms
- d. Exhaust air calculation
- e. Fresh air calculation



### 14. Commercial kitchen ventilation

- a. Hood types from ASHRAE 154
- b. Hood design from ASHRAE 154
- c. Exhaust air calculation
- d. Fresh air calculation

### 15. Car parking ventilation

- a. Exhaust air calculation
- b. Fresh air calculation
- c. Car parking smoke ventilation
- 16. Stair Case pressurization
- 17. Green HVAC
- 18. HVAC Designer check list
- 19. Preparing bill of quantity



# Competency Certificate

Electrical Design & Drafting

**Course Oultine** 

### 1. Introduction to Electrical Design

- Overview of Generation Transmission and distribution System
- ✓ Power transmission fundamentals
- ✓ Why electrical in MEP Design?
- ✓ Standards NBC,IEC,IS,NEC,DEWA,ADEWA,
  NEMA.

- ✓ Selection of luminaries
- Calculating number of luminaries using RELUX software
- ✓ Exporting from RELUX to Autocad 2D
- ✓ Exporting from RELUX to excel
- ✓ Practical example on RELUX interior lighting design

### 2. Understanding Building Orientation

- ✓ Introduction to architectural Layouts
- ✓ Different types of false ceiling
- ✓ Work plane
- ✓ Brief introduction to elevation view

### 3.Luminare Calculation

- ✓ Introduction to lighting system
- ✓ Lamps and luminaries types
- ✓ Concepts of lighting design
- ✓ Selection of lux for lighting design
- ✓ Room index calculation
- ✓ Calculating COU for lighting design

- Manual calculation for emergency lighting
- ✓ Practical example on lighting design

# 4.RELUX software for interior lighting

- ✓ Introduction to RELUX software
- ✓ Step by step Importing AutoCAD file to RELUX
- ✓ Creating scenes for interior lighting design
- ✓ Editing project scenes in RELUX software
- ✓ Diversity factor calculation
- ✓ Applying for approval to service provider(BES)
- ✓ COM,TNEB,BRPL & more)
- ✓ Thumb rule calculation

# 5.RELUX software for exterior lighting

- ✓ Introduction to exterior lighting
- ✓ Selection of luminaire for exterior lighting







# 6.DIALUX software for interior lighting design

- ✓ Introduction to DIALUX software
- ✓ Difference between RELUX and DIALUX
- ✓ First lighting system design
- ✓ Second lighting system design
- ✓ DIALUX bathroom design
- ✓ Emergency lighting design
- ✓ Interior lighting design using blue icon in DIALUX
- Practical example on DIALUX software

## 7.DIALUX software for exterior lighting design

- ✓ Selection of luminaire for exterior lighting in DIALUX
- → Basics of street light design
- → Playground lighting design

## 8.Approval for power supply from service provider

- ◆ To estimate the total connected load(w or kw)
- ✓ To calculate the total demand(w or kw)
- ✓ Selection of cables
- ✓ De-rating current calculation
- ✓ Cable sizing
- ✓ Bus bar sizing
- ✓ Selection of cable insulation
- ✓ Voltage drop calculation(VD)

### 9. Power Network design

- ✓ Power flow from distribution to appliances
- ✓ Importance of circuits
- ✓ Circuit types
- ✓ Light circuit design
- ✔ Power circuit design

### 10.Power network Distribution

- ✓ Importance of phase distribution
- When to select single phase and three phase system
- Load distribution to each phase

### 11. Power network protection

- ✓ Introduction to Circuit Breakers
- ◆ Properties and Types of Circuit Breakers
- → Difference between circuit breakers and isolators
- ✓ Circuit breaker selection
- ✓ Power system design with ELCB
- ✓ Short circuit current calculation

### 12. Panel board design

- ✓ Introduction to panel boards
- ✓ Panel board wiring
- ✓ Selection of panel board
- ✓ Types of panel boards
- ✓ Panel board sizing

#### 13. Wires and Cables

- ✓ Introduction to wires and cables
- ✓ Types of cables
- ✓ Difference between cables and wires
- ✓ Need for earthing in power system
- ✓ Types of earthing
- ✓ Earthing pit designing
- ✓ Earthing system design
- ✓ Earthing cable sizing

### 14. Conduits and cable tray

- ✓ Conduit types
- ✓ Conduit sizing
- ✓ Calculating with spacing factor
- ✓ Different types of cable tray
- ✓ Cable tray sizing
- ✓ Trench design

### 15. Transformer selection

- ✓ Types of transformers
- ✓ Types of transformer connection
- ✓ Transformer sizing (kva)
- ✓ HT yard design



### 16. DG design

- ✓ Need for a DG
- ✓ Working of DG
- ✓ Synchronizing DG to Power System
- ✓ DG Sizing methods
- ✓ Calculating diesel requirement
- ✓ Diesel tank sizing

### 17. Power factor improvement

- ✓ Why power factor to be improved?
- ✓ Difference between reactive power and real power
- ✓ Need for reactive power
- ✓ Capacitor bank sizing
- ✓ Implementation of capacitor bank

### 18. Electrical secondary protection systems

- ✓ Sizing the PV modules
- ✓ Inverter sizing
- → Battery sizing using DOD values
- ✓ Solar charger controller sizing

### 19.Lightning protection

- ✓ To calculate the total coverage area
- ✓ Lightning protection design
- ✓ Lightning arrestor calculation
- ✓ Termination of lightning protection

### 20. Solar energy

- ✓ Introduction to solar Energy
- ◆ Advantages and disadvantages of PV cells
- ✓ Can I install solar panels by myself?
- ✓ Off-grid solar system
- ◆ Determine power consumption demand load

## 21.Basics of Etap medium voltage network design

- ✓ Short circuit current calculation
- ✓ Voltage drop calculation

### 22.UPS System

- ✓ Need for an UPS
- ✓ Synchronizing UPS with power system
- ✓ Inverter sizing
- ✓ Battery sizing

## 23. Power system control and operation

- ✓ ATS system
- ✓ MTS System
- ✓ Tap changers



### **Electrical drafting using AutoCAD**

### 1. Understanding civil layouts

- ✓ Introduction and area calculation
- ✓ Main walls and Partition walls
- ✓ Stair case
- ✓ Doors and Hinges
- ✓ Dimensions
- ✓ Elevation view and section views
- ✓ Plotting

### 2. 2d Electrical Schematic

- ✓Introduction
- ✓ Legends creation part 1
- ✓ Legends creation part 2
- ✓ Legends creation part 3
- ✓ Legends creation exercise
- ✓ Panel creation
- ✓ Enclosures and name plates
- ✓ Inserting panel boars to project

### 3. Implementing legends in project

- ✓ Light sockets
- ✓ Power sockets
- ✓ Ceiling fans
- ✓ Exhaust fans
- ✓ Air Conditioner points

### 4. Buses representation in 2D

- ✓ Drafting light circuit layouts
- ✓ Drafting power circuit layouts
- ✓ Light and power circuit routing
- ✓ Cable tray routing
- ✓ Conduits routing
- ✓ Supports for conduits and cable tray

### 5. Electrical panels

- ✓ Join
- ✓ Panel creation
- ✓ Enclosures and name plates
- ✓ Inserting panel boars to project

### 6. AutoCAD lightning design

- ✓ Creation of horizontal conductors
- ✓ Creation of vertical conductors
- ✓ Creating grids
- ✓ Down comers

### 7. Earthing design

- ✓ Earthing pit design
- ✓ Creating pipes
- ✓ Creating the arc offsets
- ✓ Filleting
- ✓ Trimming

### 8. Plotting

- Scaling the project
- ✓ Plot method 1
- ✓ Plot method 2
- ✓ Exporting project to different formats

### 9. Electrical template creation

- ✓ Editing the title block
- ✓ Adding tables
- ✓ Adding legends

Software's used in training: RELUX, DIALUX, AutoCAD, ETAP and Excel



# Competency Certificate in

Plumbing Design & Drafting

**Course Oultine** 

### 1. Introduction to Plumbing System

- ✓ Plumbing standards
- ✓ Piping materials
- ✓ Valve types
- ✓ Common sanitary
- ✓ Fixtures Fittings

### 2.Plumbing Formulas

- ✓ Reynolds Number
- ◆ Chezy's equation
- ✓ Darcy's equation
- ✓ Hazen Williams formulas

### 3. Cold Water supply in buildings

- **✓**OHT capacity UGT capacity
- ✓ Drain pipe size for water tank
- ✓Over flow pipe size for water tank
- ✓ Minimum number of required plumbing fixtures
- ✓WSFU & minimum fixture branch pipe size
- ✓ Conversion of WSFU to GPM

### 4. Water pipe sizing

- ✓ Equivalent pipe length for valves & fittings
- ✓ Required terminal pressure in appliances
- ✓ Flow rates and loading units
- ✓Plumber's chart
- ✓ Equivalent pipe size

### 5. Hot Water supply in buildings

- ✓ Hot water system
- ✓ Hot water demand per fixture

### **6.Auto-Pneumatic system**

- ✓Introduction to auto-pneumatic system
- ✓Pneumatic system design
- ✓ Sizing vertical and horizontal tanks

### 7. Fountain system

### 8. Gardening system

- ✓ Gardening water irrigation system
- ✔Pump capacity

### 9.Plumbing for high rise building

- ✓ Water management system
- ✓ Terrace loop sizing

### 10.Plumbing drainage system

- Minimum internal diameter for sanitary appliances
- ✓ Fixture units for different sanitary fixtures
- ✓ Maximum number of discharge units allowed in stack
- ✓ Vent pipes
- ◆Drainage tank system Septic tank system



### 11.Manholes

- ✓ Capacity of grease interceptors
- ✓ Size of manhole
- ✓ Dispersion trenches

#### 12.Storm Water

- →Rain fall intensity(mm/hr)
- ✓ Runoff coefficient
- ✓ Sizing of rain water pipes for roof drain
- ✓ Rain water available from Roof top harvesting
- ✓ Air vent pipe sizing

### 13. Sewage Water Treatment plant

- ✓ Introduction to Sewage
- ✓ Water Treatment plant Working of STP
- ✓ STP Design



# **Competency Certificate**

Fire Fighting Design & Drafting

**Course Outline** 

### 1. Introduction to Fire Fighting

- a. Requirement of fire fighting
- b. Standards NEFA, NBA
- c. Understanding hazardous of the building
- d. Classification of fire fighting of the system
- e. Building Classification

### 2. Fire Fighting for High Rise Buildings

- a. Standards
- b. Selection of rise
- c. Sprinkler system
- e. Foam system
- f. Gas suppression system
- g. Helipads

### 3. Fire Extinguisher

- a. Introduction to fire extinguisher
- b. Classification of fire
- c. Types of fire extinguisher

### 4. Gas Suppression System

- a. Fm 200
- b. Requirements for gas suppression system
- c .Software for fm 200 calculation

### 5.Foam System

- a. Need for foam system
- b. Foam system calculation
- c. Types of foam
- d.Cleaning agents (AFFF)

#### **6.Foam Alarm Control Panel**

- a. Active system
- b. Passive system
- c. Heat detectors
- d. Smoke detectors
- e. Manual call points
- f. Zoning

### 7. Minimum Fire Fighting **Requirement for High Rise Building**

- a. Introduction to Sprinkler
- b. Working of sprinkler system
- c. Hydronic calculation (Water calculation)
- d. Deluge systems

### **8.Staircase Pressurization System**